Escuela de Ingeniería Informática

Facultad de Ingeniería

Carrera certificada por 5 años hasta Enero de 2026

Adaptive Black Hole Algorithm for solving the Set Covering Problem»

  • Soto, R.
  • Crawford, B.
  • Olivares, Rodrigo
  • Taramasco, Carla
  • Figueroa, I.
  • Gómez, A.
  • Castro, C.
  • Paredes, F.
Evolutionary algorithms have been used to solve several optimization problems, showing an efficient performance. Nevertheless, when these algorithms are applied they present the difficulty to decide on the appropriate values of their parameters. Typically, parameters are specified before the algorithm is run and include population size, selection rate, and operator probabilities. This process is known as offline control and is even considered as an optimization problem in itself. On the other hand, parameter settings or control online is a variation of the algorithm original version. The main idea is to vary the parameters so that the algorithm of interest can provide the best convergence rate and thus may achieve the best performance. In this paper, we propose an adaptive black hole algorithm able to dynamically adapt its population according to solving performance. For that, we use autonomous search which appeared as a new technique that enables the problem solver to control and adapt its own parameters and heuristics during solving in order to be more efficient without the knowledge of an expert user. In order to test this approach, we resolve the set covering problem which is a classical optimization benchmark with many industrial applications such as line balancing production, crew scheduling, service installation, and databases, among several others. We illustrate encouraging experimental results, where the proposed approach is able to reach various global optimums for a well-known instance set from Beasley’s OR-Library, while improving various modern metaheuristics.
Type of Publication:
Hits: 283
  • Escuela de Ingeniería Informática

  • Universidad de Valparaíso

  • General Cruz 222, Valparaíso

  • +56 32 250 3630

  • Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.